vericert.hls.Verilog








Definition reg : Type := positive.
Definition node : Type := positive.
Definition szreg : Type := reg * nat.

Record associations (A : Type) : Type :=
  mkassociations {
    assoc_blocking : AssocMap.t A;
    assoc_nonblocking : AssocMap.t A
  }.

Definition arr := (Array (option value)).

Definition reg_associations := associations value.
Definition arr_associations := associations arr.

Definition assocmap_reg := AssocMap.t value.
Definition assocmap_arr := AssocMap.t arr.

Definition merge_regs (new : assocmap_reg) (old : assocmap_reg) : assocmap_reg :=
  AssocMapExt.merge value new old.

Definition merge_cell (new : option value) (old : option value) : option value :=
  match new, old with
  | Some _, _ => new
  | _, _ => old
  end.

Definition merge_arr (new : option arr) (old : option arr) : option arr :=
  match new, old with
  | Some new', Some old' => Some (combine merge_cell new' old')
  | Some new', None => Some new'
  | None, Some old' => Some old'
  | None, None => None
  end.

Definition merge_arrs (new : assocmap_arr) (old : assocmap_arr) : assocmap_arr :=
  AssocMap.combine merge_arr new old.

Lemma merge_arr_empty':
  forall l,
  merge_arr (Some (arr_repeat None (length l))) (Some (make_array l)) = Some (make_array l).

Lemma merge_arr_empty:
  forall v l,
  v = Some (make_array l) ->
  merge_arr (Some (arr_repeat None (length l))) v = v.

Lemma merge_arr_empty2:
  forall v l v',
  v = Some v' ->
  l = arr_length v' ->
  merge_arr (Some (arr_repeat None l)) v = v.

Definition arr_assocmap_lookup (a : assocmap_arr) (r : reg) (i : nat) : option value :=
  match a ! r with
  | None => None
  | Some arr => Some (Option.default (NToValue 0) (Option.join (array_get_error i arr)))
  end.

Definition arr_assocmap_set (r : reg) (i : nat) (v : value) (a : assocmap_arr) : assocmap_arr :=
  match a ! r with
  | None => a
  | Some arr => a # r <- (array_set i (Some v) arr)
  end.

Definition block_arr (r : reg) (i : nat) (asa : arr_associations) (v : value) : arr_associations :=
  mkassociations (arr_assocmap_set r i v asa.(assoc_blocking)) asa.(assoc_nonblocking).

Definition nonblock_arr (r : reg) (i : nat) (asa : arr_associations) (v : value) : arr_associations :=
  mkassociations asa.(assoc_blocking) (arr_assocmap_set r i v asa.(assoc_nonblocking)).

Definition block_reg (r : reg) (asr : reg_associations) (v : value) :=
  mkassociations (AssocMap.set r v asr.(assoc_blocking)) asr.(assoc_nonblocking).

Definition nonblock_reg (r : reg) (asr : reg_associations) (v : value) :=
  mkassociations asr.(assoc_blocking) (AssocMap.set r v asr.(assoc_nonblocking)).

Inductive scl_decl : Type := VScalar (sz : nat).
Inductive arr_decl : Type := VArray (sz : nat) (ln : nat).

Verilog AST

The Verilog AST is defined here, which is the target language of the compilation.

Value

The Verilog value is a bitvector containg a size and the actual bitvector. In this case, the Word.word type is used as many theorems about that bitvector have already been proven.

Binary Operators

These are the binary operations that can be represented in Verilog. Ideally, multiplication and division would be done by custom modules which could al so be scheduled properly. However, for now every Verilog operator is assumed to take one clock cycle.

Inductive binop : Type :=
| Vadd : binop
addition (binary +)
| Vsub : binop
subtraction (binary -)
| Vmul : binop
multiplication (binary *)
| Vdiv : binop
division (binary /)
| Vdivu : binop
division unsigned (binary /)
| Vmod : binop
remainder (%)
| Vmodu : binop
remainder unsigned (%)
| Vlt : binop
less than (<)
| Vltu : binop
less than unsigned (<)
| Vgt : binop
greater than (>)
| Vgtu : binop
greater than unsigned (>)
| Vle : binop
less than or equal (<=)
| Vleu : binop
less than or equal unsigned (<=)
| Vge : binop
greater than or equal (>=)
| Vgeu : binop
greater than or equal unsigned (>=)
| Veq : binop
equal to (==)
| Vne : binop
not equal to (!=)
| Vand : binop
and (binary &)
| Vor : binop
or (binary |)
| Vxor : binop
xor (binary ^|)
| Vshl : binop
shift left (<<)
| Vshr : binop
shift right (>>>)
| Vshru : binop.
shift right unsigned (>>)

Unary Operators


Inductive unop : Type :=
| Vneg
negation (-)
| Vnot.
not operation !

Expressions

Statements

Edges

These define when an always block should be triggered, for example if the always block should be triggered synchronously at the clock edge, or asynchronously for combinational logic.
edge is not part of stmnt in this formalisation because is closer to the semantics that are used.

Inductive edge : Type :=
| Vposedge : reg -> edge
| Vnegedge : reg -> edge
| Valledge : edge
| Voredge : edge -> edge -> edge.

Module Items

Module items can either be declarations (Vdecl) or always blocks (Valways). The declarations are always register declarations as combinational logic can be done using combinational always block instead of continuous assignments.
The main module type containing all the important control signals
  • mod_start If set, starts the computations in the module.
  • mod_reset If set, reset the state in the module.
  • mod_clk The clock that controls the computation in the module.
  • mod_args The arguments to the module.
  • mod_finish Bit that is set if the result is ready.
  • mod_return The return value that was computed.
  • mod_body The body of the module, including the state machine.

Record module : Type := mkmodule {
  mod_start : reg;
  mod_reset : reg;
  mod_clk : reg;
  mod_finish : reg;
  mod_return : reg;
  mod_st : reg;
  mod_stk : reg;
  mod_stk_len : nat;
  mod_args : list reg;
  mod_body : list module_item;
  mod_entrypoint : node;
}.

Definition fundef := AST.fundef module.

Definition program := AST.program fundef unit.

Convert a positive to an expression directly, setting it to the right size.
Definition posToLit (p : positive) : expr :=
  Vlit (posToValue p).

Definition fext := unit.
Definition fextclk := nat -> fext.

State

The state contains the following items:
  • Current module that is being worked on, so that the state variable can be
retrieved and set appropriately.
  • Current module_item which is being worked on.
  • A contiunation (cont) which defines what to do next. The option is to either evaluate another module item or go to the next clock cycle. Finally it could also end if the finish flag of the module goes high.
  • Association list containing the blocking assignments made, or assignments made in previous clock cycles.
  • Nonblocking association list containing all the nonblocking assignments made in the current module.
  • The environment containing values for the input.
  • The program counter which determines the value for the state in this version of Verilog, as the Verilog was generated by the RTL, which means that we have to make an assumption about how it looks. In this case, that it contains state which determines which part of the Verilog is executed. This is then the part of the Verilog that should match with the RTL.

Inductive stackframe : Type :=
  Stackframe :
    forall (res : reg)
            (m : module)
            (pc : node)
            (reg_assoc : assocmap_reg)
            (arr_assoc : assocmap_arr),
      stackframe.

Inductive state : Type :=
| State :
    forall (stack : list stackframe)
           (m : module)
           (st : node)
           (reg_assoc : assocmap_reg)
           (arr_assoc : assocmap_arr), state
| Returnstate :
    forall (res : list stackframe)
           (v : value), state
| Callstate :
    forall (stack : list stackframe)
           (m : module)
           (args : list value), state.

Definition binop_run (op : binop) (v1 v2 : value) : option value :=
  match op with
  | Vadd => Some (Int.add v1 v2)
  | Vsub => Some (Int.sub v1 v2)
  | Vmul => Some (Int.mul v1 v2)
  | Vdiv => if Int.eq v2 Int.zero
               || Int.eq v1 (Int.repr Int.min_signed) && Int.eq v2 Int.mone
            then None
            else Some (Int.divs v1 v2)
  | Vdivu => if Int.eq v2 Int.zero then None else Some (Int.divu v1 v2)
  | Vmod => if Int.eq v2 Int.zero
               || Int.eq v1 (Int.repr Int.min_signed) && Int.eq v2 Int.mone
            then None
            else Some (Int.mods v1 v2)
  | Vmodu => if Int.eq v2 Int.zero then None else Some (Int.modu v1 v2)
  | Vlt => Some (boolToValue (Int.lt v1 v2))
  | Vltu => Some (boolToValue (Int.ltu v1 v2))
  | Vgt => Some (boolToValue (Int.lt v2 v1))
  | Vgtu => Some (boolToValue (Int.ltu v2 v1))
  | Vle => Some (boolToValue (negb (Int.lt v2 v1)))
  | Vleu => Some (boolToValue (negb (Int.ltu v2 v1)))
  | Vge => Some (boolToValue (negb (Int.lt v1 v2)))
  | Vgeu => Some (boolToValue (negb (Int.ltu v1 v2)))
  | Veq => Some (boolToValue (Int.eq v1 v2))
  | Vne => Some (boolToValue (negb (Int.eq v1 v2)))
  | Vand => Some (Int.and v1 v2)
  | Vor => Some (Int.or v1 v2)
  | Vxor => Some (Int.xor v1 v2)
  | Vshl => Some (Int.shl v1 v2)
  | Vshr => Some (Int.shr v1 v2)
  | Vshru => Some (Int.shru v1 v2)
  end.

Definition unop_run (op : unop) (v1 : value) : value :=
  match op with
  | Vneg => Int.neg v1
  | Vnot => Int.not v1
  end.

Inductive expr_runp : fext -> assocmap -> assocmap_arr -> expr -> value -> Prop :=
  | erun_Vlit :
      forall fext reg stack v,
      expr_runp fext reg stack (Vlit v) v
  | erun_Vvar :
      forall fext reg stack v r,
      reg#r = v ->
      expr_runp fext reg stack (Vvar r) v
  | erun_Vvari :
      forall fext reg stack v iexp i r,
      expr_runp fext reg stack iexp i ->
      arr_assocmap_lookup stack r (valueToNat i) = Some v ->
      expr_runp fext reg stack (Vvari r iexp) v
  | erun_Vbinop :
      forall fext reg stack op l r lv rv resv,
      expr_runp fext reg stack l lv ->
      expr_runp fext reg stack r rv ->
      Some resv = binop_run op lv rv ->
      expr_runp fext reg stack (Vbinop op l r) resv
  | erun_Vunop :
      forall fext reg stack u vu op oper resv,
      expr_runp fext reg stack u vu ->
      oper = unop_run op ->
      resv = oper vu ->
      expr_runp fext reg stack (Vunop op u) resv
  | erun_Vternary_true :
      forall fext reg stack c ts fs vc vt,
      expr_runp fext reg stack c vc ->
      expr_runp fext reg stack ts vt ->
      valueToBool vc = true ->
      expr_runp fext reg stack (Vternary c ts fs) vt
  | erun_Vternary_false :
      forall fext reg stack c ts fs vc vf,
      expr_runp fext reg stack c vc ->
      expr_runp fext reg stack fs vf ->
      valueToBool vc = false ->
      expr_runp fext reg stack (Vternary c ts fs) vf.
#[export] Hint Constructors expr_runp : verilog.

Definition handle_opt {A : Type} (err : errmsg) (val : option A)
  : res A :=
  match val with
  | Some a => OK a
  | None => Error err
  end.

Definition handle_def {A : Type} (a : A) (val : option A)
  : res A :=
  match val with
  | Some a' => OK a'
  | None => OK a
  end.


Return the location of the lhs of an assignment.

Inductive location : Type :=
| LocReg (_ : reg)
| LocArray (_ : reg) (_ : nat).

Inductive location_is : fext -> assocmap -> assocmap_arr -> expr -> location -> Prop :=
| Base : forall f asr asa r, location_is f asr asa (Vvar r) (LocReg r)
| Indexed : forall f asr asa r iexp iv,
  expr_runp f asr asa iexp iv ->
  location_is f asr asa (Vvari r iexp) (LocArray r (valueToNat iv)).

Inductive stmnt_runp: fext -> reg_associations -> arr_associations ->
                      stmnt -> reg_associations -> arr_associations -> Prop :=
| stmnt_runp_Vskip:
    forall f ar al, stmnt_runp f ar al Vskip ar al
| stmnt_runp_Vseq:
    forall f st1 st2 asr0 asa0 asr1 asa1 asr2 asa2,
    stmnt_runp f asr0 asa0 st1 asr1 asa1 ->
    stmnt_runp f asr1 asa1 st2 asr2 asa2 ->
    stmnt_runp f asr0 asa0 (Vseq st1 st2) asr2 asa2
| stmnt_runp_Vcond_true:
    forall asr0 asa0 asr1 asa1 f c vc stt stf,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) c vc ->
    valueToBool vc = true ->
    stmnt_runp f asr0 asa0 stt asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcond c stt stf) asr1 asa1
| stmnt_runp_Vcond_false:
    forall asr0 asa0 asr1 asa1 f c vc stt stf,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) c vc ->
    valueToBool vc = false ->
    stmnt_runp f asr0 asa0 stf asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcond c stt stf) asr1 asa1
| stmnt_runp_Vcase_nomatch:
    forall e ve asr0 asa0 f asr1 asa1 me mve sc cs def,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) e ve ->
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) me mve ->
    mve <> ve ->
    stmnt_runp f asr0 asa0 (Vcase e cs def) asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcase e (Stmntcons me sc cs) def) asr1 asa1
| stmnt_runp_Vcase_match:
    forall e ve asr0 asa0 f asr1 asa1 me mve sc cs def,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) e ve ->
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) me mve ->
    mve = ve ->
    stmnt_runp f asr0 asa0 sc asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcase e (Stmntcons me sc cs) def) asr1 asa1
| stmnt_runp_Vcase_default:
    forall asr0 asa0 asr1 asa1 f st e ve,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) e ve ->
    stmnt_runp f asr0 asa0 st asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcase e Stmntnil (Some st)) asr1 asa1
| stmnt_runp_Vblock_reg:
    forall lhs r rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocReg r) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vblock lhs rhs)
                 (block_reg r asr rhsval) asa
| stmnt_runp_Vnonblock_reg:
    forall lhs r rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocReg r) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vnonblock lhs rhs)
                 (nonblock_reg r asr rhsval) asa
| stmnt_runp_Vblock_arr:
    forall lhs r i rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocArray r i) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vblock lhs rhs)
                 asr (block_arr r i asa rhsval)
| stmnt_runp_Vnonblock_arr:
    forall lhs r i rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocArray r i) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vnonblock lhs rhs)
                 asr (nonblock_arr r i asa rhsval).
#[export] Hint Constructors stmnt_runp : verilog.

Inductive mi_stepp : fext -> reg_associations -> arr_associations ->
                     module_item -> reg_associations -> arr_associations -> Prop :=
| mi_stepp_Valways :
    forall f sr0 sa0 st sr1 sa1 c,
    stmnt_runp f sr0 sa0 st sr1 sa1 ->
    mi_stepp f sr0 sa0 (Valways (Vposedge c) st) sr1 sa1
| mi_stepp_Valways_ne :
    forall f sr0 sa0 c st,
    mi_stepp f sr0 sa0 (Valways (Vnegedge c) st) sr0 sa0
| mi_stepp_Vdecl :
    forall f sr0 sa0 d,
    mi_stepp f sr0 sa0 (Vdeclaration d) sr0 sa0.
#[export] Hint Constructors mi_stepp : verilog.

Inductive mi_stepp_negedge : fext -> reg_associations -> arr_associations ->
                             module_item -> reg_associations -> arr_associations -> Prop :=
| mi_stepp_negedge_Valways :
    forall f sr0 sa0 st sr1 sa1 c,
    stmnt_runp f sr0 sa0 st sr1 sa1 ->
    mi_stepp_negedge f sr0 sa0 (Valways (Vnegedge c) st) sr1 sa1
| mi_stepp_negedge_Valways_ne :
    forall f sr0 sa0 c st,
    mi_stepp_negedge f sr0 sa0 (Valways (Vposedge c) st) sr0 sa0
| mi_stepp_negedge_Vdecl :
    forall f sr0 sa0 d,
    mi_stepp_negedge f sr0 sa0 (Vdeclaration d) sr0 sa0.
#[export] Hint Constructors mi_stepp : verilog.

Inductive mis_stepp : fext -> reg_associations -> arr_associations ->
                      list module_item -> reg_associations -> arr_associations -> Prop :=
| mis_stepp_Cons :
    forall f mi mis sr0 sa0 sr1 sa1 sr2 sa2,
    mi_stepp f sr0 sa0 mi sr1 sa1 ->
    mis_stepp f sr1 sa1 mis sr2 sa2 ->
    mis_stepp f sr0 sa0 (mi :: mis) sr2 sa2
| mis_stepp_Nil :
    forall f sr sa,
    mis_stepp f sr sa nil sr sa.
#[export] Hint Constructors mis_stepp : verilog.

Inductive mis_stepp_negedge : fext -> reg_associations -> arr_associations ->
                      list module_item -> reg_associations -> arr_associations -> Prop :=
| mis_stepp_negedge_Cons :
    forall f mi mis sr0 sa0 sr1 sa1 sr2 sa2,
    mi_stepp_negedge f sr0 sa0 mi sr1 sa1 ->
    mis_stepp_negedge f sr1 sa1 mis sr2 sa2 ->
    mis_stepp_negedge f sr0 sa0 (mi :: mis) sr2 sa2
| mis_stepp_negedge_Nil :
    forall f sr sa,
    mis_stepp_negedge f sr sa nil sr sa.
#[export] Hint Constructors mis_stepp : verilog.


Fixpoint init_params (vl : list value) (rl : list reg) {struct rl} :=
  match rl, vl with
  | r :: rl', v :: vl' => AssocMap.set r v (init_params vl' rl')
  | _, _ => empty_assocmap
  end.

Definition genv := Globalenvs.Genv.t fundef unit.
Definition empty_stack (m : module) : assocmap_arr :=
  (AssocMap.set m.(mod_stk) (Array.arr_repeat None m.(mod_stk_len)) (AssocMap.empty arr)).

Inductive step : genv -> state -> Events.trace -> state -> Prop :=
  | step_module :
      forall asr asa asr' asa' basr1 nasr1 basa1 nasa1 basr2 nasr2
             basa2 nasa2 f stval pstval m sf st g ist,
      asr!(m.(mod_reset)) = Some (ZToValue 0) ->
      asr!(m.(mod_finish)) = Some (ZToValue 0) ->
      asr!(m.(mod_st)) = Some ist ->
      valueToPos ist = st ->
      mis_stepp f (mkassociations asr empty_assocmap)
                  (mkassociations asa (empty_stack m))
                  (mod_body m)
                  (mkassociations basr1 nasr1)
                  (mkassociations basa1 nasa1) ->
      mis_stepp_negedge f (mkassociations (merge_regs nasr1 basr1) empty_assocmap)
                        (mkassociations (merge_arrs nasa1 basa1) (empty_stack m))
                        (mod_body m)
                        (mkassociations basr2 nasr2)
                        (mkassociations basa2 nasa2) ->
      asr' = merge_regs nasr2 basr2 ->
      asa' = merge_arrs nasa2 basa2 ->
      asr'!(m.(mod_st)) = Some stval ->
      valueToPos stval = pstval ->
      step g (State sf m st asr asa) Events.E0 (State sf m pstval asr' asa')
| step_finish :
    forall asr asa sf retval m st g,
    asr!(m.(mod_finish)) = Some (ZToValue 1) ->
    asr!(m.(mod_return)) = Some retval ->
    step g (State sf m st asr asa) Events.E0 (Returnstate sf retval)
| step_call :
    forall g res m args,
    step g (Callstate res m args) Events.E0
         (State res m m.(mod_entrypoint)
          (AssocMap.set (mod_reset m) (ZToValue 0)
           (AssocMap.set (mod_finish m) (ZToValue 0)
            (AssocMap.set m.(mod_st) (posToValue m.(mod_entrypoint))
             (init_params args m.(mod_args)))))
          (empty_stack m))
| step_return :
    forall g m asr i r sf pc mst asa,
    mst = mod_st m ->
    step g (Returnstate (Stackframe r m pc asr asa :: sf) i) Events.E0
         (State sf m pc ((asr # mst <- (posToValue pc)) # r <- i) asa).
#[export] Hint Constructors step : verilog.

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b m0 m,
      let ge := Globalenvs.Genv.globalenv p in
      Globalenvs.Genv.init_mem p = Some m0 ->
      Globalenvs.Genv.find_symbol ge p.(AST.prog_main) = Some b ->
      Globalenvs.Genv.find_funct_ptr ge b = Some (AST.Internal m) ->
      initial_state p (Callstate nil m nil).

Inductive final_state : state -> Integers.int -> Prop :=
| final_state_intro : forall retval retvali,
    retvali = valueToInt retval ->
    final_state (Returnstate nil retval) retvali.

Definition semantics (m : program) :=
  Smallstep.Semantics step (initial_state m) final_state
                      (Globalenvs.Genv.globalenv m).

Fixpoint list_to_stmnt st :=
  match st with
  | (e, s) :: r => Stmntcons e s (list_to_stmnt r)
  | nil => Stmntnil
  end.

Fixpoint stmnt_to_list st :=
  match st with
  | Stmntcons e s r => (e, s) :: stmnt_to_list r
  | Stmntnil => nil
  end.

Lemma expr_runp_determinate :
  forall f e asr asa v,
  expr_runp f asr asa e v ->
  forall v',
  expr_runp f asr asa e v' ->
  v' = v.
#[export] Hint Resolve expr_runp_determinate : verilog.

Lemma location_is_determinate :
  forall f asr asa e l,
  location_is f asr asa e l ->
  forall l',
  location_is f asr asa e l' ->
  l' = l.

Lemma stmnt_runp_determinate :
  forall f s asr0 asa0 asr1 asa1,
  stmnt_runp f asr0 asa0 s asr1 asa1 ->
  forall asr1' asa1',
  stmnt_runp f asr0 asa0 s asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.
#[export] Hint Resolve stmnt_runp_determinate : verilog.

Lemma mi_stepp_determinate :
  forall f asr0 asa0 m asr1 asa1,
  mi_stepp f asr0 asa0 m asr1 asa1 ->
  forall asr1' asa1',
  mi_stepp f asr0 asa0 m asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.

Lemma mi_stepp_negedge_determinate :
  forall f asr0 asa0 m asr1 asa1,
  mi_stepp_negedge f asr0 asa0 m asr1 asa1 ->
  forall asr1' asa1',
  mi_stepp_negedge f asr0 asa0 m asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.

Lemma mis_stepp_determinate :
  forall f asr0 asa0 m asr1 asa1,
  mis_stepp f asr0 asa0 m asr1 asa1 ->
  forall asr1' asa1',
  mis_stepp f asr0 asa0 m asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.

Lemma mis_stepp_negedge_determinate :
  forall f asr0 asa0 m asr1 asa1,
  mis_stepp_negedge f asr0 asa0 m asr1 asa1 ->
  forall asr1' asa1',
  mis_stepp_negedge f asr0 asa0 m asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.

Lemma semantics_determinate :
  forall (p: program), Smallstep.determinate (semantics p).


Fixpoint max_reg_expr (e: expr) :=
  match e with
  | Vlit _ => 1
  | Vvar r => r
  | Vvari r e => Pos.max r (max_reg_expr e)
  | Vrange r e1 e2 => Pos.max r (Pos.max (max_reg_expr e1) (max_reg_expr e2))
  | Vinputvar r => r
  | Vbinop _ e1 e2 => Pos.max (max_reg_expr e1) (max_reg_expr e2)
  | Vunop _ e => max_reg_expr e
  | Vternary e1 e2 e3 => Pos.max (max_reg_expr e1) (Pos.max (max_reg_expr e2) (max_reg_expr e3))
  end.

Fixpoint max_reg_stmnt (st: stmnt) :=
  match st with
  | Vskip => 1
  | Vseq s1 s2 => Pos.max (max_reg_stmnt s1) (max_reg_stmnt s2)
  | Vcond e s1 s2 =>
    Pos.max (max_reg_expr e)
            (Pos.max (max_reg_stmnt s1) (max_reg_stmnt s2))
  | Vcase e stl None => Pos.max (max_reg_expr e) (max_reg_stmnt_expr_list stl)
  | Vcase e stl (Some s) =>
    Pos.max (max_reg_stmnt s)
            (Pos.max (max_reg_expr e) (max_reg_stmnt_expr_list stl))
  | Vblock e1 e2 => Pos.max (max_reg_expr e1) (max_reg_expr e2)
  | Vnonblock e1 e2 => Pos.max (max_reg_expr e1) (max_reg_expr e2)
  end
with max_reg_stmnt_expr_list (stl: stmnt_expr_list) :=
  match stl with
  | Stmntnil => 1
  | Stmntcons e s stl' =>
    Pos.max (max_reg_expr e)
            (Pos.max (max_reg_stmnt s)
                     (max_reg_stmnt_expr_list stl'))
  end.