vericert.hls.HTLPargen





#[local] Hint Resolve AssocMap.gempty : htlh.
#[local] Hint Resolve AssocMap.gso : htlh.
#[local] Hint Resolve AssocMap.gss : htlh.
#[local] Hint Resolve Ple_refl : htlh.
#[local] Hint Resolve Ple_succ : htlh.

Definition assignment : Type := expr -> expr -> stmnt.

Record state: Type := mkstate {
  st_st: reg;
  st_freshreg: reg;
  st_freshstate: node;
  st_scldecls: AssocMap.t (option io * scl_decl);
  st_arrdecls: AssocMap.t (option io * arr_decl);
  st_datapath: datapath;
  st_controllogic: controllogic;
}.

Definition init_state (st : reg) : state :=
  mkstate st
          1%positive
          1%positive
          (AssocMap.empty (option io * scl_decl))
          (AssocMap.empty (option io * arr_decl))
          (AssocMap.empty stmnt)
          (AssocMap.empty stmnt).

Module HTLState <: State.

  Definition st := state.

  Inductive st_incr: state -> state -> Prop :=
    state_incr_intro:
      forall (s1 s2: state),
        st_st s1 = st_st s2 ->
        Ple s1.(st_freshreg) s2.(st_freshreg) ->
        Ple s1.(st_freshstate) s2.(st_freshstate) ->
        (forall n,
            s1.(st_controllogic)!n = None
            \/ s2.(st_controllogic)!n = s1.(st_controllogic)!n) ->
        st_incr s1 s2.
  #[local] Hint Constructors st_incr : htlh.

  Definition st_prop := st_incr.
  #[local] Hint Unfold st_prop : htlh.

  Lemma st_refl : forall s, st_prop s s.

  Lemma st_trans :
    forall s1 s2 s3, st_prop s1 s2 -> st_prop s2 s3 -> st_prop s1 s3.

End HTLState.

Module HTLMonad := Statemonad(HTLState).

Module HTLMonadExtra := Monad.MonadExtra(HTLMonad).

Definition state_goto (st : reg) (n : node) : stmnt :=
  Vnonblock (Vvar st) (Vlit (posToValue n)).

Definition state_cond (st : reg) (c : expr) (n1 n2 : node) : stmnt :=
  Vnonblock (Vvar st) (Vternary c (posToExpr n1) (posToExpr n2)).

Definition check_empty_node_datapath:
  forall (s: state) (n: node), { s.(st_datapath)!n = None } + { True }.

Definition check_empty_node_controllogic:
  forall (s: state) (n: node), { s.(st_controllogic)!n = None } + { True }.

Lemma declare_reg_state_incr :
  forall i s r sz,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       s.(st_freshstate)
       (AssocMap.set r (i, VScalar sz) s.(st_scldecls))
       s.(st_arrdecls)
       s.(st_datapath)
       s.(st_controllogic)).

Definition declare_reg (i : option io) (r : reg) (sz : nat) : mon unit :=
  fun s => OK tt (mkstate
                s.(st_st)
                s.(st_freshreg)
                s.(st_freshstate)
                (AssocMap.set r (i, VScalar sz) s.(st_scldecls))
                s.(st_arrdecls)
                s.(st_datapath)
                s.(st_controllogic))
              (declare_reg_state_incr i s r sz).

Lemma declare_arr_state_incr :
  forall i s r sz ln,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       s.(st_freshstate)
       s.(st_scldecls)
       (AssocMap.set r (i, VArray sz ln) s.(st_arrdecls))
       s.(st_datapath)
       s.(st_controllogic)).

Definition declare_arr (i : option io) (r : reg) (sz : nat) (ln : nat) : mon unit :=
  fun s => OK tt (mkstate
                s.(st_st)
                s.(st_freshreg)
                s.(st_freshstate)
                s.(st_scldecls)
                (AssocMap.set r (i, VArray sz ln) s.(st_arrdecls))
                s.(st_datapath)
                s.(st_controllogic))
              (declare_arr_state_incr i s r sz ln).

Lemma add_instr_state_incr :
  forall s n n' st,
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n st s.(st_datapath))
       (AssocMap.set n (state_goto s.(st_st) n') s.(st_controllogic))).

Definition add_instr (n : node) (n' : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               s.(st_scldecls)
               s.(st_arrdecls)
               (AssocMap.set n st s.(st_datapath))
               (AssocMap.set n (state_goto s.(st_st) n') s.(st_controllogic)))
         (add_instr_state_incr s n n' st TRANS)
    | _ => Error (Errors.msg "HTL.add_instr")
    end.

Lemma add_instr_skip_state_incr :
  forall s n st,
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n st s.(st_datapath))
       (AssocMap.set n Vskip s.(st_controllogic))).

Definition add_instr_skip (n : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               s.(st_scldecls)
               s.(st_arrdecls)
               (AssocMap.set n st s.(st_datapath))
               (AssocMap.set n Vskip s.(st_controllogic)))
         (add_instr_skip_state_incr s n st TRANS)
    | _ => Error (Errors.msg "HTL.add_instr_skip")
    end.

Lemma add_node_skip_state_incr :
  forall s n st,
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n Vskip s.(st_datapath))
       (AssocMap.set n st s.(st_controllogic))).

Definition add_node_skip (n : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               s.(st_scldecls)
               s.(st_arrdecls)
               (AssocMap.set n Vskip s.(st_datapath))
               (AssocMap.set n st s.(st_controllogic)))
         (add_node_skip_state_incr s n st TRANS)
    | _ => Error (Errors.msg "HTL.add_node_skip")
    end.

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.
Definition block (dst : reg) (e : expr) := Vblock (Vvar dst) e.

Definition bop (op : binop) (r1 r2 : reg) : expr :=
  Vbinop op (Vvar r1) (Vvar r2).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : expr :=
  Vbinop op (Vvar r) (Vlit (intToValue l)).

Definition boplitz (op: binop) (r: reg) (l: Z) : expr :=
  Vbinop op (Vvar r) (Vlit (ZToValue l)).

Definition translate_comparison (c : Integers.comparison) (args : list reg)
  : mon expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => ret (bop Veq r1 r2)
  | Integers.Cne, r1::r2::nil => ret (bop Vne r1 r2)
  | Integers.Clt, r1::r2::nil => ret (bop Vlt r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgt r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vle r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vge r1 r2)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_imm (c : Integers.comparison) (args : list reg)
           (i: Integers.int) : mon expr :=
  match c, args with
  | Integers.Ceq, r1::nil => ret (boplit Veq r1 i)
  | Integers.Cne, r1::nil => ret (boplit Vne r1 i)
  | Integers.Clt, r1::nil => ret (boplit Vlt r1 i)
  | Integers.Cgt, r1::nil => ret (boplit Vgt r1 i)
  | Integers.Cle, r1::nil => ret (boplit Vle r1 i)
  | Integers.Cge, r1::nil => ret (boplit Vge r1 i)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison_imm instruction not implemented: other")
  end.

Definition translate_comparisonu (c : Integers.comparison) (args : list reg)
  : mon expr :=
  match c, args with
  | Integers.Clt, r1::r2::nil => ret (bop Vltu r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgtu r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vleu r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vgeu r1 r2)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_immu (c : Integers.comparison)
           (args : list reg) (i: Integers.int) : mon expr :=
  match c, args with
  | Integers.Clt, r1::nil => ret (boplit Vltu r1 i)
  | Integers.Cgt, r1::nil => ret (boplit Vgtu r1 i)
  | Integers.Cle, r1::nil => ret (boplit Vleu r1 i)
  | Integers.Cge, r1::nil => ret (boplit Vgeu r1 i)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison_imm instruction not implemented: other")
  end.

Definition translate_condition (c : Op.condition) (args : list reg)
  : mon expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => translate_comparisonu c args
  | Op.Ccompimm c i, _ => translate_comparison_imm c args i
  | Op.Ccompuimm c i, _ => translate_comparison_immu c args i
  | Op.Cmaskzero n, _ =>
    error (Errors.msg "Htlgen: condition instruction not implemented: Cmaskzero")
  | Op.Cmasknotzero n, _ =>
    error (Errors.msg
         "Htlgen: condition instruction not implemented: Cmasknotzero")
  | _, _ =>
    error (Errors.msg "Htlgen: condition instruction not implemented: other")
  end.

Definition check_address_parameter_signed (p : Z) : bool :=
  Z.leb Integers.Ptrofs.min_signed p
  && Z.leb p Integers.Ptrofs.max_signed.

Definition check_address_parameter_unsigned (p : Z) : bool :=
  Z.leb p Integers.Ptrofs.max_unsigned.

Lemma create_reg_state_incr:
  forall s sz i,
    st_incr s (mkstate
         s.(st_st)
         (Pos.succ (st_freshreg s))
         (st_freshstate s)
         (AssocMap.set s.(st_freshreg) (i, VScalar sz) s.(st_scldecls))
         s.(st_arrdecls)
         (st_datapath s)
         (st_controllogic s)).

Definition create_reg (i : option io) (sz : nat) : mon reg :=
  fun s => let r := s.(st_freshreg) in
           OK r (mkstate
                   s.(st_st)
                   (Pos.succ r)
                   (st_freshstate s)
                   (AssocMap.set s.(st_freshreg) (i, VScalar sz) s.(st_scldecls))
                   (st_arrdecls s)
                   (st_datapath s)
                   (st_controllogic s))
              (create_reg_state_incr s sz i).

Definition translate_eff_addressing (a: Op.addressing) (args: list reg)
  : mon expr :=
  match a, args with
  | Op.Aindexed off, r1::nil =>
    if (check_address_parameter_signed off)
    then ret (boplitz Vadd r1 off)
    else error (Errors.msg ("HTLPargen: translate_eff_addressing (Aindexed): address out of bounds"))
  | Op.Ascaled scale offset, r1::nil =>
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then ret (Vbinop Vadd (boplitz Vmul r1 scale) (Vlit (ZToValue offset)))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Ascaled): address out of bounds")
  | Op.Aindexed2 offset, r1::r2::nil =>
    if (check_address_parameter_signed offset)
    then ret (Vbinop Vadd (bop Vadd r1 r2) (Vlit (ZToValue offset)))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Aindexed2): address out of bounds")
  | Op.Aindexed2scaled scale offset, r1::r2::nil =>
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then ret (Vbinop Vadd (Vvar r1) (Vbinop Vadd (boplitz Vmul r2 scale) (Vlit (ZToValue offset))))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Aindexed2scaled): address out of bounds")
  | Op.Ainstack a, nil =>
    let a := Integers.Ptrofs.unsigned a in
    if (check_address_parameter_unsigned a)
    then ret (Vlit (ZToValue a))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Ainstack): address out of bounds")
  | _, _ => error (Errors.msg "HTLPargen: translate_eff_addressing unsuported addressing")
  end.

Translate an instruction to a statement. FIX mulhs mulhu
Definition translate_instr (op : Op.operation) (args : list reg) : mon expr :=
  match op, args with
  | Op.Omove, r::nil => ret (Vvar r)
  | Op.Ointconst n, _ => ret (Vlit (intToValue n))
  | Op.Oneg, r::nil => ret (Vunop Vneg (Vvar r))
  | Op.Osub, r1::r2::nil => ret (bop Vsub r1 r2)
  | Op.Omul, r1::r2::nil => ret (bop Vmul r1 r2)
  | Op.Omulimm n, r::nil => ret (boplit Vmul r n)
  | Op.Omulhs, r1::r2::nil => error (Errors.msg "Htlgen: Instruction not implemented: mulhs")
  | Op.Omulhu, r1::r2::nil => error (Errors.msg "Htlgen: Instruction not implemented: mulhu")
  | Op.Odiv, r1::r2::nil => ret (bop Vdiv r1 r2)
  | Op.Odivu, r1::r2::nil => ret (bop Vdivu r1 r2)
  | Op.Omod, r1::r2::nil => ret (bop Vmod r1 r2)
  | Op.Omodu, r1::r2::nil => ret (bop Vmodu r1 r2)
  | Op.Oand, r1::r2::nil => ret (bop Vand r1 r2)
  | Op.Oandimm n, r::nil => ret (boplit Vand r n)
  | Op.Oor, r1::r2::nil => ret (bop Vor r1 r2)
  | Op.Oorimm n, r::nil => ret (boplit Vor r n)
  | Op.Oxor, r1::r2::nil => ret (bop Vxor r1 r2)
  | Op.Oxorimm n, r::nil => ret (boplit Vxor r n)
  | Op.Onot, r::nil => ret (Vunop Vnot (Vvar r))
  | Op.Oshl, r1::r2::nil => ret (bop Vshl r1 r2)
  | Op.Oshlimm n, r::nil => ret (boplit Vshl r n)
  | Op.Oshr, r1::r2::nil => ret (bop Vshr r1 r2)
  | Op.Oshrimm n, r::nil => ret (boplit Vshr r n)
  | Op.Oshrximm n, r::nil =>
    ret (Vternary (Vbinop Vlt (Vvar r) (Vlit (ZToValue 0)))
                  (Vunop Vneg (Vbinop Vshru (Vunop Vneg (Vvar r)) (Vlit n)))
                  (Vbinop Vshru (Vvar r) (Vlit n)))
  | Op.Oshru, r1::r2::nil => ret (bop Vshru r1 r2)
  | Op.Oshruimm n, r::nil => ret (boplit Vshru r n)
  | Op.Ororimm n, r::nil => error (Errors.msg "Htlgen: Instruction not implemented: Ororimm")
  
  | Op.Oshldimm n, r::nil => ret (Vbinop Vor (boplit Vshl r n) (boplit Vshr r (Integers.Int.sub (Integers.Int.repr 32) n)))
  | Op.Ocmp c, _ => translate_condition c args
  | Op.Osel c AST.Tint, r1::r2::rl =>
    do tc <- translate_condition c rl;
    ret (Vternary tc (Vvar r1) (Vvar r2))
  | Op.Olea a, _ => translate_eff_addressing a args
  | _, _ => error (Errors.msg "Htlgen: Instruction not implemented: other")
  end.

Lemma add_branch_instr_state_incr:
  forall s e n n1 n2,
    (st_controllogic s) ! n = None ->
    st_incr s (mkstate
                 s.(st_st)
                (st_freshreg s)
                (st_freshstate s)
                s.(st_scldecls)
                s.(st_arrdecls)
                (AssocMap.set n Vskip (st_datapath s))
                (AssocMap.set n (state_cond s.(st_st) e n1 n2) (st_controllogic s))).

Definition add_branch_instr (e: expr) (n n1 n2: node) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left NTRANS =>
      OK tt (mkstate
               s.(st_st)
                (st_freshreg s)
                (st_freshstate s)
                s.(st_scldecls)
                s.(st_arrdecls)
                (AssocMap.set n Vskip (st_datapath s))
                (AssocMap.set n (state_cond s.(st_st) e n1 n2) (st_controllogic s)))
         (add_branch_instr_state_incr s e n n1 n2 NTRANS)
    | _ => Error (Errors.msg "Htlgen: add_branch_instr")
    end.

Fixpoint enumerate (i : nat) (ns : list node) {struct ns} : list (nat * node) :=
  match ns with
  | n :: ns' => (i, n) :: enumerate (i+1) ns'
  | nil => nil
  end.

Definition tbl_to_case_expr (st : reg) (ns : list node) : list (expr * stmnt) :=
  List.map (fun a => match a with
                    (i, n) => (Vlit (natToValue i), Vnonblock (Vvar st) (Vlit (posToValue n)))
                  end)
           (enumerate 0 ns).

Definition stack_correct (sz : Z) : bool :=
  (0 <=? sz) && (sz <? Integers.Ptrofs.modulus) && (Z.modulo sz 4 =? 0).

Lemma create_arr_state_incr:
  forall s sz ln i,
    st_incr s (mkstate
         s.(st_st)
         (Pos.succ (st_freshreg s))
         (st_freshstate s)
         s.(st_scldecls)
         (AssocMap.set s.(st_freshreg) (i, VArray sz ln) s.(st_arrdecls))
         (st_datapath s)
         (st_controllogic s)).

Definition create_arr (i : option io) (sz : nat) (ln : nat) : mon (reg * nat) :=
  fun s => let r := s.(st_freshreg) in
           OK (r, ln) (mkstate
                   s.(st_st)
                   (Pos.succ r)
                   (st_freshstate s)
                   s.(st_scldecls)
                   (AssocMap.set s.(st_freshreg) (i, VArray sz ln) s.(st_arrdecls))
                   (st_datapath s)
                   (st_controllogic s))
              (create_arr_state_incr s sz ln i).

Definition max_pc_map (m : Maps.PTree.t stmnt) :=
  PTree.fold (fun m pc i => Pos.max m pc) m 1%positive.

Lemma max_pc_map_sound:
  forall m pc i, m!pc = Some i -> Ple pc (max_pc_map m).

Lemma max_pc_wf :
  forall m, Z.pos (max_pc_map m) <= Integers.Int.max_unsigned ->
            map_well_formed m.

Definition poslength {A : Type} (l : list A) : positive :=
  match Zlength l with
  | Z.pos p => p
  | _ => 1
  end.

Fixpoint penumerate {A : Type} (p : positive) (l : list A) {struct l}
  : list (positive * A) :=
  match l with
  | x :: xs => (p, x) :: penumerate (Pos.pred p) xs
  | nil => nil
  end.

Fixpoint prange {A: Type} (p1 p2: positive) (l: list A) {struct l} :=
  match l with
  | x :: xs => (p1, p2, x) :: prange p2 (Pos.pred p2) xs
  | nil => nil
  end.

Lemma add_data_instr_state_incr :
  forall s n st,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n (Vseq (AssocMapExt.get_default
                            _ Vskip n s.(st_datapath)) st) s.(st_datapath))
       s.(st_controllogic)).

Definition add_data_instr (n : node) (st : stmnt) : mon unit :=
  fun s =>
    OK tt (mkstate
         s.(st_st)
         s.(st_freshreg)
         (st_freshstate s)
         s.(st_scldecls)
         s.(st_arrdecls)
         (AssocMap.set n (Vseq (AssocMapExt.get_default _ Vskip n s.(st_datapath)) st) s.(st_datapath))
         s.(st_controllogic))
       (add_data_instr_state_incr s n st).

Lemma add_control_instr_state_incr :
  forall s n st,
  (st_controllogic s) ! n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       s.(st_datapath)
       (AssocMap.set n st s.(st_controllogic))).

Definition add_control_instr (n : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left CTRL =>
      OK tt (mkstate
           s.(st_st)
           s.(st_freshreg)
           (st_freshstate s)
           s.(st_scldecls)
           s.(st_arrdecls)
           s.(st_datapath)
           (AssocMap.set n st s.(st_controllogic)))
         (add_control_instr_state_incr s n st CTRL)
    | _ =>
      Error (Errors.msg "HTLPargen.add_control_instr: control logic is not empty")
    end.

Definition add_control_instr_force_state_incr :
  forall s n st,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       s.(st_datapath)
       (AssocMap.set n st s.(st_controllogic))).
Admitted.

Definition add_control_instr_force (n : node) (st : stmnt) : mon unit :=
  fun s =>
    OK tt (mkstate
      s.(st_st)
      s.(st_freshreg)
      (st_freshstate s)
      s.(st_scldecls)
      s.(st_arrdecls)
      s.(st_datapath)
      (AssocMap.set n st s.(st_controllogic)))
   (add_control_instr_force_state_incr s n st).

Fixpoint pred_expr (preg: reg) (p: pred_op) :=
  match p with
  | Plit (b, pred) =>
    if b
    then Vrange preg (Vlit (posToValue pred)) (Vlit (posToValue pred))
    else Vunop Vnot (Vrange preg (Vlit (posToValue pred)) (Vlit (posToValue pred)))
  | Ptrue => Vlit (ZToValue 1)
  | Pfalse => Vlit (ZToValue 0)
  | Pand p1 p2 =>
    Vbinop Vand (pred_expr preg p1) (pred_expr preg p2)
  | Por p1 p2 =>
    Vbinop Vor (pred_expr preg p1) (pred_expr preg p2)
  end.

Definition translate_predicate (a : assignment)
           (preg: reg) (p: option pred_op) (dst e: expr) :=
  match p with
  | None => ret (a dst e)
  | Some pos =>
    ret (a dst (Vternary (pred_expr preg pos) e dst))
  end.

Definition translate_inst a (fin rtrn preg : reg) (n : node) (i : instr)
  : mon stmnt :=
  match i with
  | FUnop =>
    ret Vskip
  | FUop p op args dst =>
    do instr <- translate_instr op args;
    do _ <- declare_reg None dst 32;
    translate_predicate a preg p (Vvar dst) instr
  | FUread p1 p2 r => ret Vskip
  | FUwrite p1 p2 r => ret Vskip
  | FUsetpred _ c args p =>
    do cond <- translate_condition c args;
    ret (a (pred_expr preg (Plit (true, p))) cond)
  end.

Lemma create_new_state_state_incr:
  forall s p,
  st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (s.(st_freshstate) + p)%positive
       s.(st_scldecls)
       s.(st_arrdecls)
       s.(st_datapath)
       s.(st_controllogic)).

Definition create_new_state (p: node): mon node :=
  fun s => OK s.(st_freshstate)
              (mkstate
                s.(st_st)
                s.(st_freshreg)
                (s.(st_freshstate) + p)%positive
                s.(st_scldecls)
                s.(st_arrdecls)
                s.(st_datapath)
                s.(st_controllogic))
              (create_new_state_state_incr s p).

Definition translate_inst_list (fin rtrn preg: reg) (ni : node * node * list (list instr)) :=
  match ni with
  | (n, p, li) =>
    do _ <- collectlist
          (fun l =>
             do stmnt <- translate_inst Vblock fin rtrn preg n l;
             add_data_instr n stmnt) (concat li);
    do st <- get;
    add_control_instr n (state_goto st.(st_st) p)
  end.

Fixpoint translate_cfi' (fin rtrn preg: reg) (cfi: cf_instr)
  : mon (stmnt * stmnt) :=
  match cfi with
  | FUgoto n' =>
    do st <- get;
    ret (Vskip, state_goto st.(st_st) n')
  | FUcond c args n1 n2 =>
    do st <- get;
    do e <- translate_condition c args;
    ret (Vskip, state_cond st.(st_st) e n1 n2)
  | FUreturn r =>
    match r with
    | Some r' =>
      ret ((Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vvar r'))),
           Vskip)
    | None =>
      ret ((Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vlit (ZToValue 0%Z)))),
           Vskip)
    end
  | FUpred_cf p c1 c2 =>
    do (tc1s, tc1c) <- translate_cfi' fin rtrn preg c1;
    do (tc2s, tc2c) <- translate_cfi' fin rtrn preg c2;
    ret ((Vcond (pred_expr preg p) tc1s tc2s), (Vcond (pred_expr preg p) tc1c tc2c))
  | FUjumptable r tbl =>
    do s <- get;
    ret (Vskip, Vcase (Vvar r) (list_to_stmnt (tbl_to_case_expr s.(st_st) tbl)) (Some Vskip))
  | FUcall sig ri rl r n =>
    error (Errors.msg "HTLPargen: RPcall not supported.")
  | FUtailcall sig ri lr =>
    error (Errors.msg "HTLPargen: RPtailcall not supported.")
  | FUbuiltin e lb b n =>
    error (Errors.msg "HTLPargen: RPbuildin not supported.")
  end.

Definition translate_cfi (fin rtrn preg: reg) (ni: node * cf_instr)
  : mon unit :=
  let (n, cfi) := ni in
  do (s, c) <- translate_cfi' fin rtrn preg cfi;
  do _ <- add_control_instr n c;
  add_data_instr n s.

Definition transf_bblock (fin rtrn preg: reg) (ni : node * bblock)
  : mon unit :=
  let (n, bb) := ni in
  do nstate <- create_new_state ((poslength bb.(bb_body)))%positive;
  do _ <- collectlist (translate_inst_list fin rtrn preg)
                      (prange n (nstate + poslength bb.(bb_body) - 1)%positive
                                  bb.(bb_body));
  match bb.(bb_body) with
  | nil => translate_cfi fin rtrn preg (n, bb.(bb_exit))
  | _ => translate_cfi fin rtrn preg (nstate, bb.(bb_exit))
  end.


Lemma clk_greater :
  forall ram clk r',
    Some ram = Some r' -> (clk < ram_addr r')%positive.

Definition declare_ram (r: ram) : mon unit :=
  do _ <- declare_reg None r.(ram_en) 1;
  do _ <- declare_reg None r.(ram_u_en) 1;
  do _ <- declare_reg None r.(ram_wr_en) 1;
  do _ <- declare_reg None r.(ram_addr) 32;
  do _ <- declare_reg None r.(ram_d_in) 32;
  do _ <- declare_reg None r.(ram_d_out) 32;
  do _ <- declare_arr None r.(ram_mem) 32 r.(ram_size);
  ret tt.

Definition transf_module (f: function) : mon HTL.module :=
  if stack_correct f.(fn_stacksize) then
    do fin <- create_reg (Some Voutput) 1;
    do rtrn <- create_reg (Some Voutput) 32;
    do preg <- create_reg None 32;
    do _ <- collectlist (transf_bblock fin rtrn preg)
                        (Maps.PTree.elements f.(fn_code));
    do _ <- collectlist (fun r => declare_reg (Some Vinput) r 32)
                        f.(fn_params);
    do start <- create_reg (Some Vinput) 1;
    do rst <- create_reg (Some Vinput) 1;
    do clk <- create_reg (Some Vinput) 1;
    match get_ram 0 (fn_funct_units f) with
    | Some (_, r) =>
        do _ <- declare_ram r;
        do current_state <- get;
        match zle (Z.pos (max_pc_map current_state.(st_datapath)))
                  Integers.Int.max_unsigned,
          zle (Z.pos (max_pc_map current_state.(st_controllogic)))
              Integers.Int.max_unsigned,
          max_list_dec (fn_params f) (st_st current_state)
        with
        | left LEDATA, left LECTRL, left WFPARAMS =>
          ret (HTL.mkmodule
             f.(fn_params)
             current_state.(st_datapath)
             current_state.(st_controllogic)
             f.(fn_entrypoint)
             current_state.(st_st)
             fin
             rtrn
             start
             rst
             clk
             current_state.(st_scldecls)
             current_state.(st_arrdecls)
             r)
        | _, _, _=> error (Errors.msg "More than 2^32 states.")
        end
    | _ => error (Errors.msg "Stack RAM not found.")
    end
  else error (Errors.msg "Stack size misalignment.").

Definition max_state (f: function) : state :=
  let st := Pos.succ (max_reg_function f) in
  mkstate st
          (Pos.succ st)
          (Pos.succ (max_pc_function f))
          (AssocMap.set st (None, VScalar 32) (st_scldecls (init_state st)))
          (st_arrdecls (init_state st))
          (st_datapath (init_state st))
          (st_controllogic (init_state st)).

Definition transl_module (f : function) : Errors.res HTL.module :=
  run_mon (max_state f) (transf_module f).

Definition transl_fundef := transf_partial_fundef transl_module.

Definition main_is_internal (p : RTLParFU.program) : bool :=
  let ge := Globalenvs.Genv.globalenv p in
  match Globalenvs.Genv.find_symbol ge p.(AST.prog_main) with
  | Some b =>
    match Globalenvs.Genv.find_funct_ptr ge b with
    | Some (AST.Internal _) => true
    | _ => false
    end
  | _ => false
  end.

Definition transl_program (p : RTLParFU.program) : Errors.res HTL.program :=
  if main_is_internal p
  then transform_partial_program transl_fundef p
  else Errors.Error (Errors.msg "Main function is not Internal.").