vericert.common.ZExtra
Module ZLib.
Lemma mod2_cases: forall (n: Z), n mod 2 = 0 \/ n mod 2 = 1.
Lemma div_mul_undo: forall a b,
b <> 0 ->
a mod b = 0 ->
a / b * b = a.
Lemma mod_0_r: forall (m: Z),
m mod 0 = 0.
Lemma sub_mod_0: forall (a b m: Z),
a mod m = 0 ->
b mod m = 0 ->
(a - b) mod m = 0.
Lemma add_mod_0: forall a b m : Z,
a mod m = 0 ->
b mod m = 0 ->
(a + b) mod m = 0.
Lemma Z_mod_mult': forall a b : Z,
(a * b) mod a = 0.
Lemma mod_add_r: forall a b,
b <> 0 ->
(a + b) mod b = a mod b.
Lemma mod_pow2_same_cases: forall a n,
a mod 2 ^ n = a ->
2 ^ n = 0 /\ a = 0 \/ 0 <= a < 2 ^ n.
Lemma mod_pow2_same_bounds: forall a n,
a mod 2 ^ n = a ->
0 <= n ->
0 <= a < 2 ^ n.
Lemma pow2_nonneg: forall n,
0 <= 2 ^ n.
Lemma pow2_pos: forall n,
0 <= n ->
0 < 2 ^ n.
Lemma pow2_times2: forall i,
0 < i ->
2 ^ i = 2 * 2 ^ (i - 1).
Lemma pow2_div2: forall i,
0 <= i ->
2 ^ (i - 1) = 2 ^ i / 2.
Lemma div_mul_undo_le: forall a b,
0 <= a ->
0 < b ->
a / b * b <= a.
Lemma testbit_true_nonneg: forall a i,
0 <= a ->
0 <= i ->
Z.testbit a i = true ->
2 ^ i <= a.
Lemma range_div_pos: forall a b c d,
0 < d ->
a <= b <= c ->
a / d <= b / d <= c / d.
Lemma testbit_true_nonneg': forall a i,
0 <= i ->
2 ^ i <= a < 2 ^ (i + 1) ->
Z.testbit a i = true.
Lemma testbit_false_nonneg: forall a i,
0 <= a < 2 ^ i ->
0 < i ->
Z.testbit a (i - 1) = false ->
a < 2 ^ (i - 1).
Lemma signed_bounds_to_sz_pos: forall sz n,
- 2 ^ (sz - 1) <= n < 2 ^ (sz - 1) ->
0 < sz.
Lemma two_digits_encoding_inj_lo: forall base a b c d: Z,
0 <= b < base ->
0 <= d < base ->
base * a + b = base * c + d ->
b = d.
Lemma two_digits_encoding_inj_hi: forall base a b c d: Z,
0 <= b < base ->
0 <= d < base ->
base * a + b = base * c + d ->
a = c.
Lemma Z_to_nat_neg: forall (n: Z),
n < 0 ->
Z.to_nat n = 0%nat.
End ZLib.
Module ZExtra.
Lemma mod_0_bounds :
forall x y m,
0 < m ->
x mod m = 0 ->
y mod m = 0 ->
x <> y ->
x + m > y ->
y + m <= x.
Lemma Ple_not_eq :
forall x y,
(x < y)%positive -> x <> y.
Lemma Pge_not_eq :
forall x y,
(y < x)%positive -> x <> y.
Lemma Ple_Plt_Succ :
forall x y n,
(x <= y)%positive -> (x < y + n)%positive.
End ZExtra.